mex-1 and the general partitioning of cell fate in the earlyC. elegans embryo
نویسندگان
چکیده
It is thought that at least some of the initial specification of the five somatic founder cells of the C. elegans embryo occurs cell-autonomously through the segregation of factors during cell divisions. It has been suggested that in embryos from mothers homozygous for mutations in the maternal-effect gene mex-1, four blastomeres of the 8-cell embryo adopt the fate of the MS blastomere. It was proposed that mex-1 functions to localise or regulate factors that determine the fate of this blastomere. Here, a detailed cell lineage analysis of 9 mex-1 mutants reveals that the fates of all somatic founder cells are affected by mutations in this gene. We propose that mex-1, like the par genes, is involved in establishing the initial polarity of the embryo.
منابع مشابه
MEX-5 enrichment in the C. elegans early embryo mediated by differential diffusion.
Specification of germline and somatic cell lineages in C. elegans originates in the polarized single-cell zygote. Several cell-fate determinants are partitioned unequally along the anterior-posterior axis of the zygote, ensuring the daughter cells a unique inheritance upon asymmetric cell division. Recent studies have revealed that partitioning of the germline determinant PIE-1 and the somatic ...
متن کاملMEX-3 interacting proteins link cell polarity to asymmetric gene expression in Caenorhabditis elegans.
The KH domain protein MEX-3 is central to the temporal and spatial control of PAL-1 expression in the C. elegans early embryo. PAL-1 is a Caudal-like homeodomain protein that is required to specify the fate of posterior blastomeres. While pal-1 mRNA is present throughout the oocyte and early embryo, PAL-1 protein is expressed only in posterior blastomeres, starting at the four-cell stage. To be...
متن کاملReduced dosage of pos-1 suppresses Mex mutants and reveals complex interactions among CCCH zinc-finger proteins during Caenorhabditis elegans embryogenesis.
Cell fate specification in the early C. elegans embryo requires the activity of a family of proteins with CCCH zinc-finger motifs. Two members of the family, MEX-5 and MEX-6, are enriched in the anterior of the early embryo where they inhibit the accumulation of posterior proteins. Embryos from mex-5 single-mutant mothers are inviable due to the misexpression of SKN-1, a transcription factor th...
متن کاملRNA recognition by the embryonic cell fate determinant and germline totipotency factor MEX-3.
Totipotent stem cells have the potential to differentiate into every cell type. Renewal of totipotent stem cells in the germline and cellular differentiation during early embryogenesis rely upon posttranscriptional regulatory mechanisms. The Caenorhabditis elegans RNA binding protein, MEX-3, plays a key role in both processes. MEX-3 is a maternally-supplied factor that controls the RNA metaboli...
متن کاملThe maternal par genes and the segregation of cell fate specification activities in early Caenorhabditis elegans embryos.
After fertilization in C. elegans, activities encoded by the maternally expressed par genes appear to establish cellular and embryonic polarity. Loss-of-function mutations in the par genes disrupt anterior-posterior (a-p) asymmetries in early embryos and result in highly abnormal patterns of cell fate. Little is known about how the early asymmetry defects are related to the cell fate patterning...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Mechanisms of Development
دوره 54 شماره
صفحات -
تاریخ انتشار 1996